Completeness of the $k$-th nullity foliations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

on the k-nullity foliations in finsler geometry

here, a finsler manifold $(m,f)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. certain subspaces of the tangent spaces of $m$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. it is shown that if the dimension of foliation is constant, then the distribution is involutive a...

متن کامل

Rank and k-nullity of contact manifolds

We prove that the dimension of the 1-nullity distributionN(1) on a closed Sasakianmanifold M of rank l is at least equal to 2l−1 provided thatM has an isolated closed characteristic. The result is then used to provide some examples ofK-contact manifolds which are not Sasakian. On a closed, 2n+ 1-dimensional Sasakian manifold of positive bisectional curvature, we show that either the dimension o...

متن کامل

The Rank+Nullity Theorem

The rank+nullity theorem states that, if T is a linear transformation from a finite-dimensional vector space V to a finite-dimensional vector space W , then dim(V ) = rank(T ) + nullity(T ), where rank(T ) = dim(im(T )) and nullity(T ) = dim(ker(T )). The proof treated here is standard; see, for example, [14]: take a basis A of ker(T ) and extend it to a basis B of V , and then show that dim(im...

متن کامل

On the nullity of graphs

The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero in its spectrum. It is known that η(G) ≤ n − 2 if G is a simple graph on n vertices and G is not isomorphic to nK1. In this paper, we characterize the extremal graphs attaining the upper bound n− 2 and the second upper bound n− 3. The maximum nullity of simple graphs with n vertices and e edges, M(n, e), is al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 1976

ISSN: 0022-040X

DOI: 10.4310/jdg/1214433600